Topography-based surface tension gradients to facilitate water droplet movement on laser-etched copper substrates.
نویسندگان
چکیده
This paper describes a method for creating a topography-based gradient on a metallic surface to help mitigate problems associated with condensate retention. The gradient was designed to promote water droplet migration toward a specified region on the surface which would serve as the primary conduit for drainage using only the roughness of the surface to facilitate the movement of the droplets. In this work, parallel microchannels having a fixed land width but variable spacing were etched into copper substrates to create a surface tension gradient along the surface of the copper. The surfaces were fabricated using a 355 nm Nd:YVO4 laser system and then characterized using spray testing techniques and water droplet (2-10 μL) injection via microsyringe. The distances that individual droplets traveled on the gradient surface were also measured using a goniometer and CCD camera and were found to be between 0.5 and 1.5 mm for surfaces in a horizontal orientation. Droplet movement was spontaneous and did not require the use of chemical coatings. The theoretical design and construction of surface tension gradients were also explored in this work by calculating the minimum gradient needed for droplet movement on a horizontal surface using Wenzel's model of wetting. The results of this study suggest that microstructural patterning could be used to help reduce condensate retention on metallic fins such as those used in heat exchangers in heating, ventilation, air-conditioning, and refrigeration (HVAC&R) applications.
منابع مشابه
Water and Ethanol Droplet Wetting Transition during Evaporation on Omniphobic Surfaces.
Omniphobic surfaces with reentrant microstructures have been investigated for a range of applications, but the evaporation of high- and low-surface-tension liquid droplets placed on such surfaces has not been rigorously studied. In this work, we develop a technique to fabricate omniphobic surfaces on copper substrates to allow for a systematic examination of the effects of surface topography on...
متن کاملSurface tension gradient around an alcohol droplet moving spontaneously on a water surface.
The surface tension gradients in the front and rear sides of a 1-hexanol droplet exhibiting self-propelled motion were compared by a time-resolved quasi-elastic laser scattering method. The velocity of the alcohol droplet strongly correlated to the difference of the inverse of the recovery distances of the surface tensions between the front and rear sides. This result indicates that the spontan...
متن کاملTransport Phenomena and Droplet Formation During Pulsed Laser Interaction With Thin Films
This work investigates transport phenomena and mechanisms of droplet formation during a pulsed laser interaction with thin films. The surface of the target material is altered through material flow in the molten phase induced by a tightly focused laser energy flux. Such a process is useful for developing a laser-based micromachining technique. Experimental and numerical investigations of the la...
متن کاملMicrofluidic manipulation via Marangoni forces
A convective flow system is engendered when two liquid droplets, or a liquid droplet and a solid surface, are maintained at different temperatures. Such flows give rise to Marangoni forces which under proper conditions prevent droplet coalescence, cause fluid motion, and dewetting. We present a study of adsorbed and applied fluid movement on a solid surface driven by surface tension gradients c...
متن کاملShort Time Spreading of Offset Printing Liquids
Liquid–solid interactions are important for numerous natural and industrial processes in agriculture, coating, filtration, painting and printing. Understanding the effects of sequential absorption of oil components and water, in various arrangements, on porous coatings during the very short time it takes for a paper to pass through a printing machine is a prerequisite for a successful printing ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Langmuir : the ACS journal of surfaces and colloids
دوره 29 38 شماره
صفحات -
تاریخ انتشار 2013